Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652384

RESUMO

There are numerous effective procedures for cell signaling, in which humans directly transmit detectable signals to cells to govern their essential behaviors. From a biomedical perspective, the cellular response to the combined influence of electrical and magnetic fields holds significant promise in various domains, such as cancer treatment, targeted drug delivery, gene therapy, and wound healing. Among these modern cell signaling methods, electromagnetic fields (EMFs) play a pivotal role; however, there remains a paucity of knowledge concerning the effects of EMFs across all wavelengths. It's worth noting that most wavelengths are incompatible with human cells, and as such, this study excludes them from consideration. In this review, we aim to comprehensively explore the most effective and current EMFs, along with their therapeutic impacts on various cell types. Specifically, we delve into the influence of alternating electromagnetic fields (AEMFs) on diverse cell behaviors, encompassing proliferation, differentiation, biomineralization, cell death, and cell migration. Our findings underscore the substantial potential of these pivotal cellular behaviors in advancing the treatment of numerous diseases. Moreover, AEMFs wield a significant role in the realms of biomaterials and tissue engineering, given their capacity to decisively influence biomaterials, facilitate non-invasive procedures, ensure biocompatibility, and exhibit substantial efficacy. It is worth mentioning that AEMFs often serve as a last-resort treatment option for various diseases. Much about electromagnetic fields remains a mystery to the scientific community, and we have yet to unravel the precise mechanisms through which wavelengths control cellular fate. Consequently, our understanding and knowledge in this domain predominantly stem from repeated experiments yielding similar effects. In the ensuing sections of this article, we delve deeper into our extended experiments and research.

2.
Environ Pollut ; 343: 123077, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135138

RESUMO

Dual-functional S/N (sulfur and nitrogen) doped graphene-tagged zinc oxide nanograins were synthesized for bioimaging applications and light-dependent photocatalytic activity. Applying the green synthesis approach, graphene was synthesized from kimchi cabbage through a hydrothermal process followed by tagging it with synthesized zinc oxide nanoparticles (ZnO-NPs). The 2D/0D heterostructure prepared by combining both exhibited exceptional advantages. Comprehensive characterizations such as TEM, SEM, XRD, FTIR, XPS, and UV-Vis spectra have been performed to confirm the structures and explore the properties of the synthesized nanocomposite. The graphene/ZnO-NP composite produced exhibited more intense fluorescence, greater chemical stability and biocompatibility, lower cytotoxicity, and better durability than ZnO NPs conferring them with potential applications in cellular imaging. While tagging the ZnO NPs with carbon derived from a natural source containing hydroxyl, sulfur, and nitrogen-containing functional group, the S/N doped graphene/ZnO heterostructure evidences the high photocatalytic activity under UV and visible irradiation which is 3.2 and 3.8 times higher than the as-prepared ZnO-NPs. It also demonstrated significant antibacterial activity which confers its application in removing pathogenic contaminant bacteria in water bodies. In addition, the composite had better optical properties and biocompatibility, and lower toxicity than ZnO NPs. Our findings indicate that the synthesized nanocomposite will be suitable for various biomedical and pollutant remediation due to its bright light-emitting properties and stable fluorescence.


Assuntos
Grafite , Poluentes da Água , Óxido de Zinco , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Grafite/química , Enxofre , Nitrogênio/química
3.
Ultrason Sonochem ; 100: 106623, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832252

RESUMO

Designing a heterostructure nanoscale catalytic site to facilitate N2 adsorption and photogenerated electron transfer would maximize the potential for photocatalytic activity and N2 reduction reactions. Herein, we have explored the interfacial TiO2 nanograins between the Ti3C2TxMXene-WS2 heterostructure and addressed the beneficial active sites to expand the effective charge transfer rate and promote sonophotocatalytic N2 fixation. Benefiting from the interfacial contact and dual heterostructure interface maximizes the photogenerated carrier separation between WS2 and MXene/TiO2. The sonophotocatalytic activity of the MXene@TiO2/WS2 hybrid, which was assessed by examining the photoreduction of N2 with ultrasonic irradiation, was much higher than that of either sonocatalytic and photocatalytic activity because of the synergistic sonocatalytic effect under photoirradiation. The Schottky junction between the MXene and TiO2 on the hybrid MXene/TiO2-WS2 heterostructure resulted in the sonophotocatalytic performance through effective charge transfer, which is 1.47 and 1.24 times greater than MXene-WS2 for nitrogen fixation and pollutant degradation, respectively. Under the sonophotocatalytic process, the MXene/TiO2-WS2 heterostructure exhibits a decomposition efficiency of 98.9 % over tetracycline in 90 min, which is 5.46, 1.73, and 1.10 times greater than those of sonolysis, sonocatalysis, and photocatalysis, respectively. The production rate of NH3 on MXene/TiO2-WS2 reached 526 µmol g-1h-1, which is 3.17, 3.61, and 1.47 times higher than that of MXene, WS2, and MXene-WS2, respectively. The hybridized structure of MXene-WS2 with interfacial surface oxidized TiO2 nanograins minimizes the band potential and improves photocarrier use efficiency, contributing directly to the remarkable catalytic performance towards N2 photo fixation under visible irradiation under ultrasonic irradiation. This report provides the strategic outcome for the mass carrier transfer rate and reveals a high conversion efficiency in the hybridized heterostructure.

4.
Chemosphere ; 341: 140000, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652244

RESUMO

Microplastics (MPs) have become the major global concern due to their adverse effects on the environment, human health, and hygiene. These complex molecules have numerous toxic impacts on human well-being. This review focuses on the methods for chemically quantifying and identifying MPs in real-time samples, as well as the detrimental effects resulting from exposure to them. Biopolymers offer promising solutions for reducing the environmental impact caused by persistent plastic pollution. The review also examines the significant progress achieved in the preparation and modification of various biobased polymers, including polylactic acid (PLA), poly(ε-caprolactone) (PCL), lignin-based polymers, poly-3-hydroxybutyrate (PHB), and poly(hydroxyalkanoates) (PHA), which hold promise for addressing the challenges associated with unplanned plastic waste disposal.


Assuntos
Polímeros , Eliminação de Resíduos , Humanos , Microplásticos/toxicidade , Plásticos/química , Poluição Ambiental
5.
Phys Chem Chem Phys ; 25(32): 21131-21148, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37551784

RESUMO

Deep eutectic solvents (DESs) are considered "green" and "sustainable" alternatives to conventional organic solvents and ionic liquids (ILs) due to their characteristic properties and relatively low costs. DESs are considered IL analogs and have attracted consideration as benign media formulations for the synthesis of novel polymers because they satisfy the principle of sustainability. Over the past few years, the use of DESs has resulted in novel pathways for the synthesis of novel materials, biomaterials, functional materials, and ionic soft materials. Furthermore, DESs have been widely applied in the science, industrial, engineering, and technological fields. On the other hand, stimulus-responsive (smart) polymers have been widely utilized in intelligent devices owing to their virtues of good processibility, stimuli and environmental sensitivity, responsivity, and so on. With the introduction of a DES into the smart polymeric matrices, their potential characteristics, biocompatibility, and flexibility endow the corresponding DES-based polymeric materials with intriguing properties, which in turn will broaden their applications in various domains of polymer science and material chemistry. Substantial research has been done in the fabrication of DES-based polymeric materials. Numerous studies have extensively investigated the effects of DESs on biomolecules such as proteins/enzymes and nucleic acids, whereas few have addressed the impact of DESs on the aggregation and phase transition behaviors of smart polymers. This review focuses on mechanistic insights, aggregation behavior, and interactions between smart polymers and DESs. Opportunities and future research perspectives in this blossoming arena are also discussed. It is hoped that this review will pave futuristic pathways for the design and development of advanced DES-based polymeric materials and biomaterials for various applications.

6.
Adv Mater ; 35(48): e2301589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37435972

RESUMO

Tritium is a sustainable next-generation prime fuel for generating nuclear energy through fusion reactions to fulfill the increasing global energy demand. Owing to the scarcity-high demand tradeoff, tritium must be bred inside a fusion reactor to ensure sustainability and must therefore be separated from its isotopes (protium and deuterium) in pure form, stored safely, and supplied on demand. Existing multistage isotope separation technologies exhibit low separation efficiency and require intensive energy inputs and large capital investments. Furthermore, tritium-contaminated heavy water constitutes a major fraction of nuclear waste, and accidents like the one at Fukushima Daiichi leave behind thousands of tons of diluted tritiated water, whose removal is beneficial from an environmental point of view. In this review, the recent progress and main research trends in hydrogen isotope storage and separation by focusing on the use of metal hydride (e.g., intermetallic, and high-entropy alloys), porous (e.g., zeolites and metal organic frameworks (MOFs)), and 2-D layered (e.g., graphene, hexagonal boron nitride (h-BN), and MXenes) materials to separate and store tritium based on their diverse functionalities are discussed. Finally, the challenges and future directions for implementing tritium storage and separation are summarized in the reviewed materials.

7.
ACS Omega ; 7(44): 39742-39749, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385857

RESUMO

Detailed information about molecular interactions and conformational changes of polymeric components in the presence of ionic liquids (ILs) is essential for designing novel polymeric ionic liquid-based biomaterials. In biomaterials science and technology, thermoresponsive polymers (TRPs) are widely viewed as potential candidates for the fabrication of biorelated medical devices. Here, we synthesized thermoresponsive poly(N-vinyl-caprolactam) (PVCL) polymer and investigated the effects of imidazolium-based ILs (1-ethyl-3-methyl imidazolium nitrate and 1-butyl-3-methylimidazolium nitrate) with common anion and different cations on the phase transition behavior of PVCL aqueous solution. The impact of ILs on the phase transition behavior of PVCL was monitored by using UV-visible absorption spectra, steady-state fluorescence spectroscopy, thermal fluorescence spectroscopy, and temperature dependent dynamic light scattering. Results showed significant changes in the absorbance, molecular interactions, agglomeration, and coil to globule transition behaviors of PVCL in the presence of two ILs. PVCL aqueous solution showed significant conformational changes after the addition of ILs.

8.
J Hazard Mater ; 421: 126775, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358971

RESUMO

Hydroquinone (HQ) and catechol (CC) are the two major dihydroxybenzene isomers, are considered one of the toxic pollutants in wastewater, which often coexisted and impede each other during sample identification. For practical analysis and simultaneous detection of HQ and CC in wastewater, we fabricate a hybrid electrochemical sensor with electrospun one-dimensional (1D) MnMoO4 nanofibers coupled with a few-layered exfoliated two-dimensional (2D) MXene. The facilitated abundant defective edges of 1D MnMoO4 and 2D MXene nanoarchitecture accelerated the effect of synergistic signal amplification and exhibited high electrocatalytic activity towards the oxidation of hydroquinone and catechol. MnMoO4-MXene-GCE showed oxidation potentials of 0.102 V and 0.203 V for hydroquinone and catechol, respectively. It revealed the distinguished and simultaneous detection range of 0.101 V with a strong anodic peak current. Noteworthily, the proposed 1D-2D hybridized MnMoO4-MXene-GCE sensor exhibited a wide linear response from 5 nM to 65 nM for hydroquinone and catechol. Moreover, it showed a low detection limit of 0.26 nM and 0.30 nM for HQ and CC with high stability, respectively. The feasible 1D-2D MnMoO4-MXene nanocomposite-based biosensor effectively detected hydroquinone and catechol in hazardous water pollutants using the differential pulse voltammetric technique with recovery values.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Nanofibras , Eletrodos , Águas Residuárias
9.
Chemosphere ; 263: 128266, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297210

RESUMO

In current work, Prussian blue (PB)- and hydroxyapatite (HAp)-embedded micro-adsorbents (PB-HAp-MAs) were rationally fabricated through an easy and flexible custom-made micronozzle system as a novel bifunctional adsorbent. The adsorption performance of the as-prepared samples was conducted based on the removal of cesium (Cs+) and strontium (Sr2+) ions. Adsorption behaviors of the PB-HAp-MAs were also evaluated as function extrusion dimensions and adsorbate concentration. The adsorption isotherm was well fitted by the Langmuir model with adsorption capacities of 24.688 mg g-1 and 29.254 mg g-1 for Cs+ and Sr2+, respectively. Specially, the enhanced adsorption activity can be synergistically attributed to the porous nature of the developed alginate backbone with a high surface area of encapsulated functional nanoparticles, thus leading to rapid saturation within 1 min. In addition, the as-synthesized PB-HAp-MAs were successfully separated from the aqueous solution within 10 s by applying a magnetic field. We expect that our findings will provide valuable guidelines towards developing highly efficient adsorbents for environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Estrôncio , Adsorção , Césio , Íons/análise
10.
Nanoscale ; 12(26): 14047-14060, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32582888

RESUMO

Nanorod (NR) arrays offer commendable visible-light-driven photocatalytic performances. Herein, we describe the construction of a ternary ZnO-ZnS-Gd2S3 nanostructural array in which a sulfidation process is used to decorate a Gd2S3 shell layer with a ZnS interface over vapor-phase-grown vertically-aligned ZnO. With control over the shell-wall thickness, the shell layer of ∼25 nm wall thickness on the ultra-long ZnO NR arrays exhibited a higher catalytic efficiency close to 3.3, 2.0, 1.2, and 1.8 times those of the bare ZnO, the ZnO-ZnS, the Gd2S3-decorated (∼10 nm) and Gd2S3 shell-layered (∼40 nm) ZnO-ZnS core-shell structures, respectively. The core-shell geometry and the shell-wall thickness with maximized contact interface afforded increased light absorption in the visible region and effectively retarded the recombination rate of the photoinduced charge carriers by confining electrons and holes separately, thus providing advantages in terms of the degradation of the pharmaceutical residue tetracycline and the industrial pollutant 4-nitrophenol in wastewater.


Assuntos
Nanotubos , Óxido de Zinco , Antibacterianos , Sulfetos , Compostos de Zinco
11.
Nanotechnology ; 31(27): 275402, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32182601

RESUMO

Electrochemical water splitting represents an ideal strategy for producing clean hydrogen as an energy carrier that serves as an alternative to fossil fuels. As an effective method for hydrogen production, an efficient inexpensive multifunctional electrocatalyst with high durability is designed. Herein, we describe the heterostructural design of a three-dimensional catalytic network with self-embedded CoNi2S4 nanograins grown on electrospun carbon nanofibers (CoNi2S4-CNFs) with anchored thin-layer reduced graphene oxide. This is achieved via facile electrospinning followed by carbonization, low-temperature sulfidation, and surface functionalization. As a bifunctional catalyst, CoNi2S4-CNFs exhibited robust high activity toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. The anchored ultrathin graphene oxide layer promoted the stability and durability of the catalytic network with an efficient path for the transportation of electrons. The rGO-anchored CoNi2S4-CNFs yielded overpotential values of 228 mV and 205 mV for the HER and OER, respectively, that drives a current density of 20 mA cm-2 in an alkaline medium. Notably, the excellent electrochemical properties are attributed to the functional effect of the CoNi2S4 on the CNF network. The ultrathin feature of rGO improved the durability of the catalytic network. Moreover, using the rGO-anchored CoNi2S4-CNFs as a cathode and anode in a two-electrode water splitting system required a cell voltage of only 1.55 V to reach a current density of 10 mA cm-2. These CNFs exhibited outstanding durability for 48 h. The present work offers new insight for the design of a catalytic network with a non-noble metal catalyst that exhibits excellent electrocatalytic activity and durability on the metal sulfides in overall water splitting.

12.
Nanomaterials (Basel) ; 10(2)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050408

RESUMO

A flexible asymmetric supercapacitor (ASC) with high electrochemical performance was constructed using reduced graphene oxide (rGO)-wrapped redox-active metal oxide-based negative and positive electrodes. Thin layered rGO functionality on the positive and the negative electrode surfaces has promoted the feasible surface-active sites and enhances the electrochemical response with a wide operating voltage window. Herein we report the controlled growth of rGO-wrapped tubular FeMoO4 nanofibers (NFs) via electrospinning followed by surface functionalization as a negative electrode. The tubular structure offers the ultrathin-layer decoration of rGO inside and outside of the tubular walls with uniform wrapping. The rGO-wrapped tubular FeMoO4 NF electrode exhibited a high specific capacitance of 135.2 F g-1 in Na2SO4 neutral electrolyte with an excellent rate capability and cycling stability (96.45% in 5000 cycles) at high current density. Meanwhile, the hydrothermally synthesized binder-free rGO/MnO2 nanorods on carbon cloth (rGO-MnO2@CC) were selected as cathode materials due to their high capacitance and high conductivity. Moreover, the ASC device was fabricated using rGO-wrapped FeMoO4 on carbon cloth (rGO-FeMoO4@CC) as the negative electrode and rGO-MnO2@CC as the positive electrode (rGO-FeMoO4@CC/rGO-MnO2@CC). The rationally designed ASC device delivered an excellent energy density of 38.8 W h kg-1 with a wide operating voltage window of 0.0-1.8 V. The hybrid ASC showed excellent cycling stability of 93.37% capacitance retention for 5000 cycles. Thus, the developed rGO-wrapped FeMoO4 nanotubes and MnO2 nanorods are promising hybrid electrode materials for the development of wide-potential ASCs with high energy and power density.

13.
J Hazard Mater ; 391: 122249, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32097876

RESUMO

Heterogeneous photocatalysis has been proven to be a promising approach to overcome the great challenges encountered with conventional technologies for environmental remediation. Herein, for the first time, a novel hierarchical architecture of nitrogen-doped TiO2@Bi2WxMo1-xO6 (N-T@BWMO-x, x = 0-1.0) was rationally designed and fabricated through an electrospinning route followed by a solvothermal process. The photocatalytic activity of the as-prepared samples was evaluated based on the degradation of tetracycline hydrochloride (TC) under visible-light irradiation. The results indicated that the molar fraction of W/Mo has a strong impact on the photocatalytic efficiency and photoelectrochemical performance of the N-T@BWMO composites. Compared to N-TiO2 and the binary composites, N-T@BWMO-0.25 exhibited outstanding photocatalytic activity and significant cycling stability. The enhanced photocatalytic activity can be synergistically linked to the excellent native adsorption, extended light-harvesting region, hierarchical structure, and strong interfacial interaction between N-TiO2 and BWMO, which can effectively prolong the lifetime of charge-carriers. Moreover, active species-trapping and electron paramagnetic resonance results confirmed that holes and superoxide radicals were the dominant active species responsible for TC removal. A possible photocatalytic mechanism underlying the degradation of TC by N-T@BWMO-0.25 is also proposed. We expect that our findings will provide new insights into the use of highly efficient core-shell heterostructure photocatalysts, with potential applications in environmental decontamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...